Can you increase the predictive performance of models using binning methods or temporal weights?

Background: Electronic Health Record (EHR) data is considered both to have a lot of potential for clinical prediction modelling, yet complex and challenging to model. These complexities have led most researchers to bin covariates across a whole observation period or parts of an observation period, ignoring temporal information present in the data.

Temporality of EHR data
- **Sparsity**
 A patient goes to a clinician for a certain problem which is related to specific covariates, so not all covariates are recorded at every visit.

- **Irregular Intervals**
 Patients do not attend clinical visits regularly, meaning data is not sampled at regular intervals. But, increased visits may hint towards a patient’s health worsening.

- **High-dimensionality**
 In each visit different combinations of features are measured. These features are measured at different levels of granularity, and multiple features can represent the same clinical concept.

Patient Level Prediction (hospital readmission)
- **Index date (t=0) (hospital admission)**
 The point at which one predicts if an outcome will occur.

- **Observation Period**
 (one year prior admission)
 Where predictors are observed, albeit asynchronously and inconsistently.

- **Time-At-Risk**
 (one month post admission)
 Post the index date, in which there is or is not a predicted outcome.

Methods
- **One Window**
 The observation period acts as one window.

- **Overlapping Window**
 One or more windows that are anchored at the index date.

- **Distinct Window**
 T distinct windows over the observation period.

Binning Strategies
- **One Window**
 The observation period acts as one window.

Weighting Strategies
- **Knowledge Based**
 Non-chronic related covariates are discounted faster than chronic related covariates.

- **Probabilistic Weights**
 A probability density function is fitted to each covariate, this gives the probability of a covariate occurring. These probabilities are used as weights.

- **Learned Weights**
 Coefficients estimated through a regression are normalised and combined with reciprocal temporal discounting.