The Africa Chapter is raising awareness of OHDSI in Africa to improve interoperability and promote collaboration across Africa and globally

OHDSI in Africa and Partnerships with European Institutions

Cynthia Sung1,2, Agnes Kiragga2, Kofi Agyare3, OO Akoku4, David Amadi5, Daniel Ankrah6, Chidi Asuzu7, Adam Bouras7, Geert Byttebier8,9, Aize Cao10, Ahmed El-Sayed11, Chris Fourie11, Yacob Gebretensae12, Nega Gebreyesus13, Jay Greenfield14, Lars Halvorsen15, Jared Houghtaling15,16, Katherine Johnston17, Andrew S. Kanter18, Mack Kigada19, Sylvia Muyingo2, Maureen Ng'etich2, Michael Ochola2, Henry Ogoe20, Bolu Oluwalade21, James Orwa22, Mariette Smith17, Amelia Taylor23, Marleen Temmerman24, Jim Todd24,25,26, Marc Twagirumukiza2, Daniel M Wanga2, Andrew Williams16 and the OHDSI Africa Chapter

1Duke-NUS Medical School SGP, 2African Population Health Research Center KEN, 3Nayaho Medical Center GHA, 4Obafemi Awolowo University NGA, 5Korle-Bu Teaching Hospital GHA, 6Duke Medical School USA, 7CDC USA, 8Meharry College of Medicine USA, 9Sapienza University of Rome ITA, 10Ahmed El-Sayed, 11University of Cape Town ZAF, 12Columbia University USA, 13Publicis Sapient GHA, 14HIMSS, 15Kigali Health University RW, 16London School of Hygiene and Tropical Medicine GBR, 17Catholic University of Health and Applied Sciences TZA, 18National Inst for Medical Research, TZA *Chapter Co-leads

Background

Africa faces significant health challenges from a high burden of infectious diseases, maternal health issues, and rising incidence of non-communicable diseases. African governments are striving to establish efficient systems for sharing health data and promoting interoperability among various repositories as health data are increasingly migrating to electronic data capture. The OHDSI framework for data standardization and collaboration through a federated approach, as well as the extensive suite of programs for quality checks, visualization and rigorous analysis of observational data can accelerate efforts of African entities to strengthen health information systems and analyze large health data sets, both within and across African countries, to generate evidence for improving health systems and patient care, in a manner that is privacy protecting, transparent in methodology, and economical through use of open-source tools.

Methods

Africa Chapter members are spreading awareness of OHDSI to other African researchers, health data custodians and government officials, using the Value Proposition document written by Chapter members in 2023. Chapter members have begun the process to obtain permission to do an OMOP ETL of a specific healthcare database in their country. At Chapter meetings, more experienced members are transferring their knowledge and experiences, as well as introducing synthetic datasets, to give members who are new to OHDSI an opportunity to become familiar with OHDSI tools. The OHDSI Africa chapter is seeking to build collaborative relationships with other data science programs such as DS-I Africa, African Open Science Platform and VODAN.

Results

• Institutions in Rwanda, Kenya, Malawi, Tanzania, and South Africa have created OMOP versions of local health data.
• The LAISDAR project located at the Rwanda Biomedical Center contains 3.6 million unique subjects in OMOP CDMs transformed from OpenMRS and OpenClinic EMRs at 15 hospitals.
• The INSPIRE network at the African Population Health and Research Centre (APHRC) carried out ETLs to the OMOP CDM using data from the Health and Demographic Surveillance System in Kenya, Tanzania and South Africa.
• APHRC is collaborating with UK institutions The Alan Turing Institute and London School of Hygiene and Tropical Medicine, CODATA (France), I-DAIR (Switzerland) and institutions in Cameroon, Ethiopia and Senegal on a Wellcome Trust funded project “Data Science Without Borders”, which will conduct research using data harmonized to the OMOP CDM.
• The Virus Outbreak Data Network (VODAN) Africa has established data science partnerships in 12 African countries and invited OHDSI Africa Chapter members to meet at Leiden University (Belgium) on 04 Jun 2024 to discuss a plan for collaboration.

Conclusion

Awareness of OHDSI is growing in Africa with several African institutions successfully implementing the OMOP CDM and OHDSI tools. Several OHDSI Africa Chapter members are poised to do OMOP CDM implementations at their institutions. Despite the availability of vast amounts of health data in Africa, these remain siloed in different organizations and captured in varying formats and terminologies. Facilitating knowledge transfer from experienced OHDSI members, within Africa and globally, to those less familiar with OHDSI tools, will expedite interoperability and capacity building in Africa. Funding is urgently needed to empower African scientists to lead this transformative effort.
Background color codes for different OHDSI poster categories

- Observational data standards and management
- Methodological research
- Open-source analytics development
- Clinical applications
Main finding goes here (plain English). Emphasize the important words.

Title: Investigating the dynamics of X on Y.

Background: 70,000 people needed a portrait-orientation style layout for #betterposter, according to the Open Science Framework download counts.

Result 1: Quickly explain what the graph shows. Help people think.

Result 2: Big figures are easier to skim at a distance, and more accessible.

Methods

1. Immune checkpoint inhibits T-cell activation.

 ![Diagram 1](image1.png)

2. Anti-PDF-1 antibodies permit T cell activation

 ![Diagram 2](image2.png)

Limitation: This is only one interpretation of findings that suggest effective posters are uncluttered, have big figures & text, and include callout boxes with takeaways. It is missing your personality and creative flair.

Leeroy Jenkins, Shuri Wright, Emmett Brown