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INTRO

* |Infectious disease-related information is usually
recorded in the form of free-text, which needs natural
language processing (NLP) to apply.

« However, most of free-text is containing protected
health information (PHI) that should be de-identified.

* |n this study, we applied the NLP to confirm the
distribution of infection-related information after de-
identifying PHI in admission notes.

METHODS

1. Data preparation

* Ajou University Medical Centre database

* Inclusion criteria

1) Admitted from Jan 2012 - Dec 2021.

2) Diagnosed with infectious disease within £2 days
from the admission date.
- Infectious disease diagnosis

: SNOMED code ‘40733004 (Disorder due to infectious
disease)’ and its sub-hierarchy codes

2. PHI identification and de-identification

« We compared 1,000 admission notes that were
randomly selected with the HIPAA PHI list to
identify the potential PHI entity.

« Two approaches to de-identify PHI entities

1) Dictionary-based 2) Rule-based

approach approach
* For name, country, * For other PHI
and hospital entities patterns

3. Feature identification using topic modeling
* Tokenization
- By unigram
- Descriptive analyses for frequency
« Latent Dirichlet allocation (LDA)
- Describing documents by clustering words based
on the frequency
- Perplexity score to decide an optimal n of topics

RESULTS

Extract admission notes and PHI de-identification

 We extracted patients and their admission notes.
 We identified PHI entities and their patterns.
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e Constructed dictionaries (dictionary : cases)
- Name : 47,696, Country : 241, Hospital : 45,932

(regular expression rules to de-identify showed in the abstract).
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Descriptive summary

« “fever”’ has the highest frequency
(50,701/2,185,836 ; 2.3%) (Figure 3).

* Infectious disease related words (red box) also
showed high frequency.

LDA topic modeling
 Decided optimal topic number
- 5~9 topics were the optimal topic number according
to the perplexity score
- 6 topics for a clear explanation of semantic meanings
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Figure 3. Perplexity scores plot

* Figure 2 shows the most frequently identified
words per each topic.
* C(Clustered word per each topic related below.

Topic 1 Topic 2 Topic 3

Sepsis Urinary tract infection Pediatric infection

Topic 4 Topic 5 Topic 6
Surgical infection | Respiratory infection Viral infection
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« Relevance of clustered words per each topic
(Figure 4).
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Figure 4. Topic distance map and relevant terms for the topic 2

CONCLUSION

* In this study, we extracted sign and symptoms related to
infectious disease from deidentified clinical records using
natural language processing technique.

« This framework can be used for future research such as
data standardization of infectious disease and cohort
phenotyping.
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