Development of Health Care Big Data Ecosystem (Health Eco 4.0) based on OMOP-CDM in Korea

Seng Chan You MD¹; Rae Woong Park, MD PhD¹,²

¹Department of Biomedical Informatics, Ajou University School of Medicine, Suwon, Korea; ²Department of Biomedical Sciences, Ajou University Graduate School of Medicine, Suwon, Korea

Introduction

- Observational Health Data Sciences and Informatics (OHDSI) is an international collaborative whose goal is to create and apply open-source data analytic solutions to a large network of health databases to improve human health and well-being.
- Currently, Korean national insurance departments and several tertiary hospitals start to adopt OMOP-CDM to generate medical evidence together.
- We initiate the new era of Korean OHDSI, by developing health care big data ecosystem (Health Eco 4.0) in Korea

Data partners and data governance

Thirty-nine hospitals join the Korean OHDSI network

- The president of 39 hospitals in Korea approved to share the result of IRB process and conduct joint research. Most of these hospitals are tertiary teaching hospitals, which encompass 54 million patients

Data Governance

- Bimonthly, the periodic meeting has been held with principal investigators from various hospitals to discuss data governance since March 2017

Data integration

- The seven CDM extension models will be developed to capture various unstructured health care data. These data will be integrated into clinical CDM.

Economic virtuous cycle

- It is important to build a virtuous cycle for sustainable growth of health care data market and OHDSI network.
- We can create a virtuous economic cycle for the health care data industry.

Industrial partners

- We will support the collaboration between various industry, research centers and global OHDSI through coordinating platform, CLOVER.

Outline of Health Eco 4.0

- The Korean Health Eco 4.0 builds an active OHDSI community in Korea, which will actively contribute to the extension of tools and improvement of medical health care.

Acknowledgment: This research was supported by a grant of the Korea Health Technology R&D Project through the Korea Health Industry Development Institute (KHIDI), funded by the Ministry of Health & Welfare, Republic of Korea grant number: HI16C092