Always ♥ Your Data: An Approach to Observational Data Lifecycle Management in the OHDSI Ecosystem

Erica A. Voss, MPH1,2,3,*, Patrick B. Ryan, PhD1,2,4, Clair Blacketer, MPH1,2, Ajit A. Londhe, MPH1,2, Martijn J. Schuemie, PhD1,2
1 Janssen Research and Development, Raritan, NJ, 2 Observational Health Data Sciences and Informatics (OHDSI), New York, NY, 3 Erasmus University Medical Center, Rotterdam, Netherlands, 4 Columbia University, New York, NY

INTRODUCTION
- Observational Medical Outcomes Partnership (OMOP) Common Data Model (CDM) must be maintained. This includes:
 • Testing
 • Updating the OMOP Vocabulary
 • Managing raw data schema or CDM version changes
- The CDM enables research and can efficiently leverage diverse raw data sets to produce timely evidence

DESIGN & IMPLEMENT
- CDM Data Custodians:
 • design an Extract, Transform, & Load (ETL) process for each raw data source
 • develop a program to convert raw data to the CDM
- CDM_BUILDER [1] is an example of a program, it has evolved over time:
 • Initially SQL queries were used
 • Then generic off-the-shelf ETL tools
 • Ultimately, a customized program that standardizes where it can but is flexible enough to handle each data source’s nuances

MAINTAIN
- CDM ETL Coordinators:
 • decide on changes to CDM_BUILDER
 • important role of driving changes to the timeline
- Monthly changes necessary are decided upon, usually there is a theme:
 o Data Refreshes (i.e. raw data sources have new data)
 o Updating the OMOP Vocabulary
 o Tuning CDM_BUILDER (i.e. time to improving the run time)
 o Adding enhancements / fixing bugs
- Tasks managed in issue tracking tool
- Initial time investment of developing a CDM is high, however over time the energy required to maintain not as significant

TESTING
- Rabbit In a Hat (RIAH) Testing Framework [2] to build unit tests:
 • CDM_BUILDER is run on the test cases and the outputted CDM is evaluated
 • Test cases / CDM_BUILDER augmented until all test cases pass
- OHDSI Automated Characterization of Health Information at Large-scale Longitudinal Evidence Systems (ACHILLES) enables characterization of a CDM
 • Critical components from ACHILLES are used:
 o Data Density report shows by domain, year by year number of records
 o Heel report was designed by OHDSI to check for data quality issues
 • Additional diagnostics are recommended:
 o Compare OMOP Vocabularies - if OMOP Vocabulary is to be updated, old version is compared to the new
 o Compare “cohorts of interest” in new/old CDM - the cohorts have conditions, drug exposures, measurements, and procedures frequently used for analysis within an organization

RELEASE
- There are a series of steps handling “cut over”:
 • Communication describing changes is shared with the analysts
 • Date / time are set to update the standardized tools
 • Final communication asking them to start using the new sources
- ACHILLES’ preprocessed summarizations of each CDM allow users databases’ characterization and data quality
- ATLAS allows an organization to perform typical epidemiologic data analysis work however in a standard, systematic way improving quality and transparency
 o develop concept sets of standard terminology
 o create cohorts of patients
 o generate R code for performing analysis
- Methods Library uses CDM to do population-level estimation and patient-level prediction

CONCLUSION
- CDMs must be maintained / updated as the world around them changes
- Efficiencies gained by using CDMs offset the energy spent on development / maintenance
- Processes highlighted in this poster could help improve lifecycle of CDMs

REFERENCES

*Corresponding Author – evoss3@its.jnj.com